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Abstract

Atrial fibrillation (AF) is a common cardiac arrhythmia
characterised by disordered electrical activity. Standard
treatment for AF is catheter ablation, which is invasive
and irreversible. Patient-specific computer models (often
referred to as digital twins) offer a promising way to im-
prove treatment planning. However, their clinical value
depends on our ability to rapidly calibrate electrophysio-
logical parameters from routine measurements. We present
a new framework for efficient calibration of atrial tissue
properties using local activation times (LAT)s and action
potential durations (APD)s derived from an S1S2 stimula-
tion protocol. By combining Gaussian process emulators
with a fast data assimilation method, we are able to rapidly
estimate key tissue parameters with uncertainty quantifica-
tion. Our results highlight the feasibility of near real-time
calibration, a crucial step towards the clinical translation
of digital twins in cardiac electrophysiology.

1. Introduction

Atrial fibrillation (AF) is a common supraventricular ar-
rhythmia affecting around 46.3M individuals worldwide.
Moreover, this disease increases the incidence of cardio-
vascular disease, stroke, and premature death [1]. AF is
typically treated by radiofrequency catheter ablation[2],
which consists of burning portions of the cardiac tissue to
restore the sinus rhythm. This treatment is invasive, ir-
reversible and has mild effectiveness, with many patients
requiring multiple procedures to achieve sinus rhythm[3].
Computational models of the human heart improved our
understanding of the underpinning mechanisms responsi-
ble for arrhythmias in the ventricles and atria[4]. Patient-
specific models of the human atria have the potential to tai-
lor the treatment to each patient and, ultimately, improve
its effectiveness; their application in clinical practice, how-
ever, is hampered by the narrow time scales characterising

clinical procedures.
Accurate estimation of tissue parameters in cardiac elec-

trophysiology models is essential for predictive simula-
tions and personalised therapy planning. While tradi-
tional methods for parameter inference involve solving the
forward problem iteratively, the associated computational
cost becomes prohibitive when using the finite element
method for three-dimensional tissue simulations for the
left atrium.

This paper proposes a computationally efficient frame-
work for parameter calibration in synthetic settings, as-
suming spatially homogeneous tissue properties. Specif-
ically, we adapt the ensemble Kalman filter (EnKF) to a
static inverse problem using Gaussian process (GP) em-
ulators trained on simulations of the modified Mitchell-
Schaeffer[5] model. The proposed method used local ac-
tivation time (LAT) and action potential duration (APD)
data to estimate tissue parameters, and we demonstrate its
performance using synthetic problems.

2. Methods

We developed a computational framework to calibrate
atrial electrophysiology models against synthetic measure-
ments. Left atrial simulations were performed with the
modified Mitchell–Schaeffer model under an S1S2 pacing
protocol, generating LAT and APD data, see Section 2.1
for details. Parameter inference used a Gaussian process
based ensemble Kalman filter as described in Section 2.2.

2.1. Electrophysiology Model and Syn-
thetic Data

We model left atrial electrophysiology using the modi-
fied Mitchell–Schaeffer model under the monodomain as-
sumption with homogeneous, isotropic tissue. The model
is parameterised by four cell-level time constants that de-
scribe the different stages of the action potential, and a tis-

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.266



sue conductivity parameter. Simulations were carried out
with openCARP [6] on ARCHER2[7] on a finite element
mesh derived from imaging data [8], using no-flux bound-
ary conditions and resting initial conditions.

A paced activation protocol was applied by stimulating
a region near the coronary sinus (CS), as shown in Figure
1. We used an S1S2 pacing protocol, consisting of three
S1 stimuli separated by 800 ms, followed by a premature
S2 stimulus with a 500 ms coupling interval.

Our analysis focuses on local activation times (LATs),
which can be directly measured during electroanatomical
mapping. In addition, we computed action potential dura-
tion (APD). While APD is not directly measured in clinical
practice, it can be approximated from the effective refrac-
tory period (ERP), obtained by repeating the S1S2 protocol
at progressively shorter coupling intervals until propaga-
tion fails. Including APD in this study allows us to assess
the potential added value of ERP-like measurements for
calibration, relative to their additional experimental cost.
To generate synthetic data, we added noise to simulated
LAT and APD values at a subset of atrial locations (Figure
1).

(a) (b)

Figure 1: Two views of the left atrium anatomy illustrating
the 15 measurement locations (blue dots) and stimulus re-
gion (green patch) for the S1S2 pacing protocol.

2.2. Proposed Method: Gaussian Process
Assisted Ensemble Kalman Filter

We develop a new approach for calibrating electro-
physiological parameters by combining Gaussian pro-
cess (GP)[9] emulators with the ensemble Kalman filter
(EnKF)[10]. GP models provide a flexible, probabilistic
surrogate for the simulator, capturing both mean predic-
tions and uncertainty at unseen parameter values. This al-
lows rapid evaluation of activation times and other outputs
without running the full simulator.

The EnKF is a Monte Carlo method for combining
model predictions with data, commonly used for dynamic
state–parameter estimation. We adapt it for static calibra-
tion of electrophysiological parameters, where there is no
underlying state evolution. Unlike previous work[11, 12],
we use artificial parameter dynamics that allows the en-
semble to explore the parameter space, and a sequence of

perturbed observations ensures a smooth transition from
prior to posterior. This method is a simpler variant of the
algorithm in [13]. It does not account for the Gaussian
process uncertainty, and hence is computationally cheaper.

This EnKF framework using GP emulators, produces an
approximate posterior over the parameters while remain-
ing computationally efficient (1). Numerical experiments
in [13] have shown that the posterior converges to that of
the true simulator as the GP efficiency improves, highlight-
ing the method’s potential for rapid, uncertainty-aware cal-
ibration in static inverse problems such as patient-specific
atrial electrophysiology.

Algorithm 1 EnKF for Static Calibration with a GPE mea-
surement operator

Inputs: Noise covariance matrix R, number of iter-
ations K, process covariance σθ, initial distribution
Nd(µ0,Σ0), observation vector Y ∈ Rp.
Initialise: Sample parameters θn0 ∼ Nd(µ0,Σ0) for
n = 1, . . . , N .
for k = 0, . . . ,K − 1 do

ϵy ∼ Np(0,KR)
Yk+1 = Y + ϵy // Perturb observation
for n = 1, . . . , N do

ϵθ ∼ Nd(0, I)
θ̃nk+1 = θnk + σθϵθ // Predict θ

end for

Pk+1 =
1√

N − 1

[
θ̃k+1 − ⟨θ̃k+1⟩

]
Hk+1 =

1√
N − 1

[
m̄(θ̃k+1)− ⟨m̄(θ̃k+1)⟩

]
where θ̃k+1, m̄(θ̃k+1) are matrices with nth column
θ̃nk+1 and m̄(θ̃nk+1). ⟨A⟩ denotes the matrix with N iden-
tical columns, each being the mean of the columns of A

Kk+1 = Pk+1H
T
k+1(Hk+1H

T
k+1 +R))−1

for n = 1, . . . , N do
θnk+1 = θ̃nk+1 +Kk+1[Yk+1 − m̄(θ̃nk+1)]
// Update θ

end for
end for

3. Results

We first generated an ensemble of 176 left atrial simula-
tions (using a physiologically feasible space-filling design
[13] under the S1S2 pacing protocol, extracting three types
of measurements: local activation times (LATs) from S1
and S2, and action potential duration (APD) from S2 at 15
measurement sites (Figure 1). Independent Gaussian pro-
cess (GP) emulators were trained for each of the 45 out-
puts, achieving high predictive accuracy with R2 > 0.95
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on held-out test cases.
To evaluate calibration performance, we carried out 50

synthetic experiments, each with a different ground truth
parameter set and additive observation noise. In each case,
the calibrated parameter estimate was taken as the mean
of the posterior ensemble produced by the EnKF method.
Three data scenarios were considered: (i) S1 only, (ii)
S1+S2, and (iii) S1+S2+APD. The comparison between
ground truth and estimated parameters, see Figure 2 (a)-
(e), shows that τin and tissue conductivity, D, can be con-
sistently identified, while the other parameters require in-
clusion of S2 and APD data to be well estimated.

Predictive accuracy was quantified by running simu-
lations with calibrated parameters and computing root-
mean-square errors (RMSEs) across the full atrial mesh (≈
300k nodes). As shown in Figure 2 (f)-(h), S1 predictions
improve modestly when S2 data are included, while S2
predictions are only accurate when S2 measurements are
used. APD predictions showed consistent improvement as
more measurement types were incorporated. Overall, in-
cluding multiple data types progressively reduced RMSEs
and improved recovery of physiologically relevant param-
eter values.

These results demonstrate that the proposed GP–EnKF
framework provides computationally efficient calibration
of atrial tissue parameters with the flexibility to incorporate
different experimental measurement types, yielding larger
performance gains from measurement diversity than from
measurement quantity.

4. Conclusions

We presented an efficient calibration framework for
tissue parameter estimation in cardiac electrophysiology
models, combining a modified Ensemble Kalman Filter
(EnKF) with Gaussian process (GP) emulators. This ap-
proach substantially reduces the computational cost of for-
ward simulations while preserving high calibration accu-
racy when tested on synthetic LAT and APD data. In the
specific problem configuration considered, incorporating
GPs reduced the number of simulations required for cali-
bration from 10,000 to about 200—an approximate 98%
reduction. Using this framework, we successfully cali-
brated two parameters, τin and tissue conductivity, from
LAT data alone. A third parameter, τopen, proved more
challenging to infer from S1 LAT data alone, but its cali-
bration improved when using combined S1+S2 LAT data,
and further improved with the inclusion of APD data. Al-
though demonstrated for spatially homogeneous parame-
ters, the framework can be extended to spatially heteroge-
neous fields through more expressive emulators and local-
ization strategies within the EnKF. Future work will focus
on validation using patient-specific datasets.

Figure 2: (a)–(e): Estimated versus ground truth values of
the tissue parameters obtained from 150 independent cali-
bration trials. Each panel corresponds to a specific param-
eter, with reference values shown along the x-axis and the
corresponding calibrated estimates along the y-axis. Col-
ors indicate the measurement type used during calibration.
(f)–(h): Root-mean-square errors (RMSEs) across 50 sim-
ulation runs, computed over the left atrial mesh ( 300 k
nodes). Panels show RMSEs for LAT S1, LAT S2, and
APD, respectively. Each boxplot compares three calibra-
tion settings: (i) LAT (S1) only, (ii) LATs (S1 + S2), and
(iii) LATs (S1 + S2) + APD.
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